RAS Earth ScienceПетрология Petrology

  • ISSN (Print) 0869-5903
  • ISSN (Online) 3034-5855

Carbonatization of Serpentinites of the Mid-Atlantic Ridge: 2. Evolution of chemical and isotopic (δ¹⁸O, δ¹³С, Rb, Sr, Sm, Nd) compositions during exhumation of abyssal peridotites

PII
S0869590325010028-1
DOI
10.31857/S0869590325010028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 33 / Issue number 1
Pages
27-44
Abstract
The alteration of oceanic lithosphere by fluids is the primary driver of water-rock reactions with ultramafic and mafic rocks that transform CO2 into carbonates. Carbonation of peridotites involve the generation of carbonate veins and large-scale carbonatization of serpentinized peridotites exposed on the ocean floor at slow-spreading and ultraslow-spreading ridges and in ophiolites on continents. We report geochemical and isotope data (δ¹⁸O, δ¹³C, Rb, Sr, Sm, Nd) on ultramafic rocks that provide insights into the isotopic trends and fluid evolution of peridotite carbonation and help to understand heterogeneities in alteration and carbonization within peridotite-dominated serpentinization system. The main goal of this work is to reconstruct the hydration history and to understand conditions, isotope and chemical changes during carbonatization and serpentinization of mantle peridotites. Our studies show a comparative analysis of petrological, geochemical, isotope data (strontium, neodymium, oxygen and carbon) and degree of fluid–rock interaction during uplift and emplacement of carbonated serpentinites and present a reconstruction of the long-term fluid interaction of abyssal peridotites from the Mid-Atlantic Ocean Ridge.
Keywords
Срединно-Атлантический хребет абиссальные перидотиты серпентинизация карбонатизация океаническая литосфера δ¹⁸O δ¹³C Sr Nd параметр вода/порода (W/R)
Date of publication
14.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Дубинина Е.О. Стабильные изотопы легких элементов в процессах контаминации и взаимодействия флюид–порода. Автореф.… докт. геол.-мин. наук. М.: ИГЕМ РАН, 2013.
  2. 2. Дубинина Е.О., Чернышев И.В., Бортников Н.С. и др. Изотопно-геохимические характеристики гидротермального поля Лост Сити // Геохимия. 2007. № 11. С. 1223–1236.
  3. 3. Дубинина Е.О., Бортников Н.С., Силантьев С.А. Отношение флюид/порода в процессах серпентинизации океанических ультраосновных пород, вмещающих гидротермальное поле Лост Сити, 30 c.ш., САХ // Петрология. 2015. Т. 23. № 6. С. 589–606. https://doi.org/
  4. 4. Дубинина Е.О., Крамчанинов А.Ю., Силантьев С.А., Бортников Н.С. Влияние скорости осаждения на изотопный состав (δ¹⁸О, δ¹³Cи δ88Sr) карбонатов построек поля Лост Сити (Срединно-Атлантический хребет, 30 с.ш.) // Петрология. 2020. Т. 28. № 4. С. 413–430. https://doi.org/
  5. 5. Силантьев С.А. Вариации геохимических и изотопных характеристик реститовых перидотитов вдоль простирания Срединно-Атлантического хребта как отражение природы мантийных источников магматизма // Петрология. 2003. Т. 11. № 4. С. 339–362.
  6. 6. Силантьев С.А., Мироненко М.В., Новоселов А.А. Гидротермальные системы в перидотитовом субстрате медленно-спрединговых хребтов. Моделирование фазовых превращений и баланса вещества: Нисходящая ветвь // Петрология. 2009. Т. 17. № 2. С. 154–174.
  7. 7. Силантьев С. А., Бортников Н.С., Шатагин К.Н. и др. Перидотит-базальтовая ассоциация САХ на 19°42ʹ–19°59ʹ с. ш.: оценка условий петрогенезиса и баланса вещества при гидротермальном преобразовании океанической коры // Петрология. 2015. Т. 23. № 1. С. 3–25. https://doi.org/ 10.7868/S0869590315010057
  8. 8. Силантьев С.А., Кубракова И.В., Тютюнник О.А. Характер распределения сидерофильных и халькофильных элементов в серпентинитах океанической литосферы как отражение магматической и внутрикоровой эволюции мантийного субстрата // Геохимия. 2016. № 12. С. 1055–1075. https://doi.org/
  9. 9. Силантьев С.А., Краснова Е.А., Бадюков Д.Д. и др. Карбонатизация серпентинитов Срединно-Атлантического хребта: 1. Геохимические тренды и минеральные ассоциации // Петрология. 2023. Т. 31. № 2. С. 153–181. https://doi.org/
  10. 10. Alt J.C. Subseafloor processes in mid-ocean ridge hydrothermal systems // Ed. S.E. Humphris et al. Seafloor Hydrothermal Systems, Physical, Chemical, and Biological Interactions. Geophys. Monogr. AGU, Washington, D.C., 1995. V. 91. Р. 85–114. doi.org/10.1029/GM091p0085
  11. 11. Alt J.C. Alteration of the upper oceanic crust: mineralogy, chemistry and processes // Eds. E.E. Davis, H. Elderfield. Hydrogeology of the Oceanic Lithosphere, Cambridge Univ. Press, United Kingdom, 2004. P. 495–533.
  12. 12. Alt J.C., Bach W. Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B // Geochem. Geophys. Geosyst. 2006. V. 7. № 12. G12008. https://doi.org/10.1029/2006GC001385.
  13. 13. Alt J.C., Shanks W.C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling // Geochim. Cosmochim. Acta. 2003. V. 67. № 4. P. 641–653. https://doi.org/10.1016/S0016-7037 (02)01142-0
  14. 14. Alt J.C., Teagle D.A.H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 // Chem. Geol. 2003. V. 201. № 3–4. P. 191–211. https://doi.org/10.1016/S0009-2541 (03)00201-8
  15. 15. Andreani M., Luquot L., Gouze P. et al. Experimental study of carbon sequestration reactions controlled by the percolation of CO2–rich brine through peridotites // Environ. Sci. Technol. 2009. V. 43. № 4. P. 1226–1231. https://doi.org/10.1021/es8018429
  16. 16. Arai S., Ishimaru S., Mizukami T. Methane and propane micro-inclusions in olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt, Japan: Hydrocarbon activity in a subduction zone and Ti mobility // Earth Planet. Sci. Lett. 2012. V. 353–354. P. 1–11. https://doi.org/10.1016/j.epsl.2012.07.043
  17. 17. Bach W., Alt J.C., Niu Y. et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3267–3287. https://doi.org/10.1016/S0016-7037 (01)00677-9
  18. 18. Beinlich A., John T., Vrijmoed J.C. et al. Instantaneous rock transformations in the deep crust driven by reactive fluid flow // Nat. Geosci. 2020. V. 13. № 4. P. 307–311. https://doi.org/10.1038/s41561-020-0554-9
  19. 19. Bickle M.J., Teagle D.A.H. Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems // Earth Planet. Sci. Lett. 1992. V. 113. № 1–2. P. 219–237. https://doi.org/10.1016/0012-821X (92)90221-G
  20. 20. Bonatti E., Lawrence J.R., Hamlyn P.R., Breger D. Aragonite from deep sea ultramafic rocks // Geochim. Cosmochim. Acta. 1980. V. 44. № 8. P. 1207–1214. https://doi.org/10.1016/0016-7037 (80)90074-5
  21. 21. Cannat M., Fontaine F., Escartín J. Serpentinization and associated hydrogen and methane fluxes at slow-spreading ridges // Diversity of hydrothermal systems on slow spreading ocean ridges. 2010. V. 188. P. 241–264. https://doi.org/10.1029/2008GM000760
  22. 22. Carpenter S.J., Lohmann K.C. Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate // Geochim. Cosmochim. Acta. 1992. V. 56. P. 1837–1849. https://doi.org/10.1016/0016-7037 (92)90314-9
  23. 23. Charlou J.L., Donval J.P., Fouquet Y. et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (3614ʹN, MAR) // Chem. Geol. 2002. V. 191. № 4. P. 345–359. https://doi.org/10.1016/S0009-2541 (02)00134-1
  24. 24. Delacour A., Fruh-Green G.I., Bernasconi S.M., Kelley D.S. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30N, MAR) // Geochim. Cosmochim. Acta. 2008. V. 72. № . P. 3681–3702. https://doi.org/10.1016/j.gca.2008.04.039
  25. 25. Dietzel M., Jianwu T., Leis A., Köhler S.J. Oxygen isotopic fractionation during inorganic calcite precipitation — Effects of temperature, precipitation rate and pH // Chem. Geol. 2009. V. 268. № 1–2. P. 107–115. https://doi.org/10.1016/j.gca.2008.04.039
  26. 26. Escartín J., Smith D. K., Cann J. R. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere // Nature. 2008. V. 455. P. 790–794. https://doi.org/10.1038/nature07333
  27. 27. Frost R.B., Beard J.S. On silica activity and serpentinization // J. Petrol. 2007. V. 48. № 7. P. 1351–1368. https://doi.org/10.1093/petrology/egm021
  28. 28. Früh-Green G.L., Connolly J.A.D., Plas A. et al. Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity // The Subseafloor Вiosphere at Mid-Оcean Ridges. 2004. P. 119–136. https://doi.org/10.1029/144GM08
  29. 29. Früh-Green G.L., Kelley D.S., Bernasconi S.M. et al. 30.000 years of hydrothermal activity at the Lost City vent field // Science. 2003. V. 301. № 5632. P. 495–498. https://doi.org/10.1126/science.1085582
  30. 30. Gao Y., Hoefs J., Przybilla R., Snow J.E. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B // Chem. Geol. 2006. V. 233. № 3–4. P. 217–234. https://doi.org/10.1016/j.chemgeo.2006.03.005
  31. 31. Gillis K.M., Coogan L.A., Pedersen R. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise // Earth Planet. Sci. Lett. 2005. V. 232. № 1–2. P. 83–94. https://doi.org/10.1016/j.epsl.2005.01.008
  32. 32. Halls C., Zhao R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland // Mineral. Deposita. 1995. V. 30. P. 303–313. https://doi.org/10.1007/BF00196366
  33. 33. Hart R. Chemical exchange between seawater and deep ocean basalts // Earth Planet. Sci. Lett. 1970. V. 9. № 3. P. 269–279. https://doi.org/10.1016/0012-821X (70)90037-3
  34. 34. Hart S.R., Blusztajn J.S., Dick H.J.B. et al. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros // Geochim. Cosmochim. Acta. 1999. V. 63. № 23–24. P. 4059–4080. https://doi.org/10.1016/S0016-7037 (99)00309-9
  35. 35. Hess J., Bender M., Schilling J.G. Assessing seawater/basalt exchange of strontium isotopes in hydrothermal processes on the flanks of mid-ocean ridges // Earth Planet. Sci. Lett. 1991. V. 103. № 1–3. P. 133–142. https://doi.org/10.1016/0012-821X (91)90155-B
  36. 36. Hövelmann J., Austrheim H., Beinlich A., Anne Munz I. Experimental study of the carbonation of partially serpentinized and weathered peridotites // Geochim. Cosmochim. Acta. 2011. V. 75. № 22. P. 6760–6779. https://doi.org/10.1016/j.gca.2011.08.032
  37. 37. Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites // Earth Planet. Sci. Lett. 1980. V. 50. № 1. P. 139–155. https://doi.org/10.1016/0012-821X (80)90125-9
  38. 38. Kempton P.D., Fitton J.G., Hawkesworth C.J., Ormerod D.S. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States // J. Geophys. Res.: Solid Earth. 1991. V. 96. № B8. P. 13713–13735. https://doi.org/10.1029/91JB00373
  39. 39. Kelemen P.B., Matter J. In situ carbonation of peridotite for CO2 storage // PNAS. 2008. V. 105. № 45. P. 17295–17300. https://doi.org/10.1073/pnas.0805794105
  40. 40. Kellermeier M., Glaab F., Klein R. et al. The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study // Nanoscale. 2013. V. 5. № 15. P. 7054–7065. https://doi.org/10.1039/c3nr00301a
  41. 41. Kelley D.S., Früh-Green G.L. Volatile lines of descent in submarine plutonic environments: Insights from stable isotope and fluid inclusion analyses // Geochim. Cosmochim. Acta. 2001. V. 65. № 19. P. 3325–3346. https://doi.org/10.1016/S0016-7037 (01)00667-6
  42. 42. Kelley D.S., Karson J.A., Früh-Green G.L. et al. A serpentinite-hosted ecosystem: The Lost City hydrothermal field // Science. 2005. V. 307. № 5714. P. 1428–1434. https://doi.org/10.1126/science.1102556
  43. 43. Kim S.T., O’Neil J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates // Geochim. Cosmochim. Acta. 1997. V. 61. № 16. P. 3461–3475. https://doi.org/10.1016/S0016-7037 (97)00169-5
  44. 44. Lacinska A.M., Styles M.T., Bateman K. et al. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites // Front. Earth Sci. 2017. https://doi.org/10.3389/feart.2017.00037
  45. 45. Lang S.Q., Früh-Green G.L., Bernasconi S.M. et al. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system // Geochim. Cosmochim. Acta. 2012. V. 92. P. 82–99. https://doi.org/10.1016/j.gca.2012.06.006
  46. 46. Lister C.R.B. On the thermal balance of a mid-ocean ridge // Geophys. J. R. Astron. Soc. 1972. V. 26. № 5. P. 515–535. https://doi.org/10.1111/j.1365-246X.1972.tb05766.x
  47. 47. Ludwig K.A., Kelley D.S., Butterfield D.A. et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field // Geochim. Cosmochim. Acta. 2006. V. 70. № 14. P. 3625–3645. https://doi.org/10.1016/j.gca.2006.04.016
  48. 48. Lumsden D.N., Morrison J.W., Lloyd R.V. The role of iron and Mg/Ca ratio in dolomite synthesis at 192C // J. Geol. 1995. V. 103. № 1. P. 51–61. https://doi.org/10.1086/629721
  49. 49. Malvoisin B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical // Earth Planet. Sci. Lett. 2015. V. 430. P. 75–85. https://doi.org/10.1016/j.epsl.2015.07.043
  50. 50. McCollom T.M., Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks // Geochim. Cosmochim. Acta. 2009. V. 73. № 3. P. 856–875 https://doi.org/10.1016/j.gca.2008.10.032
  51. 51. McCollom T.M., Seewald J.S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions // Earth Planet. Sci. Lett. 2006. V. 243. № 1–2. P. 74–84. https://doi.org/10.1016/j.epsl.2006.01.027
  52. 52. McCrea J.M. On the isotopic chemistry of carbonates and a paleotemperature scale // J. Chemic. Phys. 1950. V. 18. № 6. P. 849–857. https://doi.org/10.1063/1.1747785
  53. 53. Michard A., Albarède F., Minster J.F., Charlou J.-L. Rare-earth elements and uranium in high temperature solutions from the East Pacific Rise hydrothermal vent field (13N) // Nature. 1983 V. 303. P. 795–797. https://doi.org/10.1038/303795a0
  54. 54. Milliken K.L., Morgan J.K. Chemical evidence for near seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899), Iberia Abyssal Plane // Eds. R.B. Whitmarsh, D.S. Sawyer, A. Klaus, D.G. Masson. Proceedings of the Ocean Drilling Program, Scientific Results. 1996. V. 149. P. 553–558.
  55. 55. Palandri J.L., Reed M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation // Geochim. Cosmochim. Acta. 2004. V. 68. № 5. P. 1115–1133. https://doi.org/10.1016/j.gca.2003.08.006
  56. 56. Peuble S., Andreani M., Godard M. et al. Carbonate mineralization in percolated olivine aggregates: Linking effects of crystallographic orientation and fluid flow // Amer. Mineral. 2015. V. 100. № 2–3. P. 474–482. https://doi.org/10.2138/am-2015-4913
  57. 57. Picazo S., Malvoisin B., Baumgartner L., Bouvier A.S. Low temperature serpentinite replacement by carbonates during seawater influx in the Newfoundland Margin // Minerals. 2020. V. 10. № 2. P. 184. https://doi.org/10.3390/min10020184
  58. 58. Proskurowski G., Lilley M.D., Seewald J.S. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field // Science. 2008. V. 319. P. 604–607. https://doi.org/10.1126/ science.1151194
  59. 59. Schwarzenbach E.M., Früh-Green G.L., Bernasconi S.M. et al. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems // Chem. Geol. 2013. V. 351. P. 115–133. https://doi.org/10.1016/j.chemgeo.2013.05.016
  60. 60. Shanks W.C., Böhlke J.K., Seal R.R. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms // Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. 1995. V. 70. P. 194–221. doi: 10.1515/9781501508745-011
  61. 61. Snow J.E., Dick H.J.B. Pervasive magnesium loss by marine weathering of peridotite // Geochim. Cosmochim. Acta. 1995. V. 59. № 20. P. 4219–4235. https://doi.org/10.1016/0016-7037 (95)00239-V
  62. 62. Stakes D., Mével C., Cannat M., Chaput T. Metamorphic stratigraphy of Hole 735B // Proc. Ocean Drill. Program Sci. Results. 1991. V. 118. P. 153–180.
  63. 63. Sulpis O., Agrawal1 P., Wolthers M. et al. Aragonite dissolution protects calcite at the seafloor // Nature Communicat. 2022. V. 13. P. 1104. https://doi.org/10.1038/s41467-022-28711-z
  64. 64. Ternieten L., Früh-Green G.L., Bernasconi S.M. Carbonate mineralogy in mantle peridotites of the Atlantis Massif (IODP Expedition 357) // J. Geophys. Res.: Solid Earth. 2021. V. 126. e2021JB021885 https://doi.org/10.3929/ethz-b-000522609
  65. 65. Torres M.E., Mix A.C., Rugh W.D. Precise δ¹³C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry // Limnol. Oceanogr. Methods. 2005. V. 3. № 8. P. 349–360. https://doi.org/10.4319/lom.2005.3.349
  66. 66. Ulrich M., Muñoz M., Guillot S. et al. Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite // Contrib. Mineral. Petrol. 2014. V. 167. № 1 P. 1—19. https://doi.org/10.1007/s00410-013-0952-8
  67. 67. Wheat C.G., Mottl M.J. Geochemical fluxes through mid-ocean ridge flanks // Hydrogeology of the Oceanic Lithosphere. 2004. P. 627–658.
  68. 68. Yang T., Jiang S.Y. A new method to determine carbon isotopic composition of dissolved inorganic carbon in seawater and pore waters by CO2-water equilibrium // Rapid Commun. Mass Spectrom. 2012. V. 26. P. 805–810. https://doi.org/10.1002/rcm.6164
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library