- Код статьи
- S0869590325030013-1
- DOI
- 10.31857/S0869590325030013
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 33 / Номер выпуска 3
- Страницы
- 3-22
- Аннотация
- Для расшифровки состава и истории формирования ядра палеопротерозойского Лапландско-Кольского орогена (ЛКО) проведено петрологическое и геохронологическое (U-Th-Pb (LA-ICP-MS) метод по циркону) изучение породных комплексов Порыгубского тектонического меланжа, обнаженных на двух соседних островах, Озерчанка и Паленый. На о-ве Озерчанка преобладают тоналит-трондъемит-гранодиоритовые (TTГ) (Grt)-Cpx-Opx гнейсы, которые содержат многочисленные тела мафических гранулитов и прорваны сини и посттектоническими гранитоидами. TTT-гнейсы имеют архейский возраст (>2.6 млрд лет, TNd(DM) = 2.9–3.0 млрд лет). Деплегированность тяжелых P3Э в гнейсах указывает на образование их родоначальных расплавов в равновесии с гранатсодержащим реститом. Тела мафических гранулитов широко варьируют по геохимическим характеристикам и, возможно, представляют фрагменты палеопротерозойских мафических интрузивов и даек. Минеральные парагенезисы гнейсов фиксируют процессы метаморфизма гранулитовой (T = 780–820°C и P = 8.6–9.4 кбар) и более поздней амфиболитовой (T = 640–650°C и P = 6.7–7.3 кбар) фации с возрастом около 1.9 млрд лет. На о-ве Паленый доминирующие полосчатые Grt-Cpx-Opx гнейсы варьируют по составу от андезибазальтов до риолитов. Вулканогенные протолиты этих пород имеют островодужные геохимические характеристики, палеопротерозойский возраст 1958 ± 6 млн лет и ювенильные источники расплавов (εNd(1960) = +1.7 ÷ +3.1; TNd(DM) = 2.2–2.3 млрд лет). Породы подверглись гранулитовому метаморфизму с возрастом около 1.9 млрд лет. Присутствие архейского блока в Порыгубском тектоническом меланже, сложенном палеопротерозойскими островодужными комплексами в ядре ЛКО, может быть объяснено в рамках двух моделей. Этот архейский блок может представлять либо самостоятельный фрагмент архейской литосферы, который был обособлен при расколе континентальной коры и открытии Лапландско-Кольского океана, а впоследствии был совмещен с субдукционными палеопротерозойскими комплексами в ходе коллизионной орогении, либо край архейского континента, вскрытый в эрозионном окне палеопротерозойского тектонического покрова.
- Ключевые слова
- Лапландско-Кольский ороген тектонический меланж Поры губа гранулиты
- Дата публикации
- 10.01.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 7
Библиография
- 1. Азимов П.Я., Бушмин С.А. P-T история высоко-температурного/высокобарного (HT/HP) гранулитового метаморфизма, сопряженного с надвигообразованием в зоне сочленения Порьегубского и Умбинского блоков Лапландского гранулитового пояса (северо-восток Балтийского щита) // Докл. АН. 2009. Т. 425. № 3. С. 367-371.
- 2. Балаганский В.В. Главные этапы тектонического развития северо-востока Балтийского щита в палеопротерозое. Автореф. дисс. … докт. геол.-мин. наук. СПб.: ИГГД РАН, 2002. 32 с.
- 3. Балаганский В.В., Глебовицкий В.А. Лапландский гранулитовый пояс и комплементарные структуры / Ранний докембрий Балтийского щита. Л.: Наука, 2005. С. 124-175.
- 4. Балаганский В.В., Тиммерман М.Я., Кислицын Р.В. и др. Изотопный возраст пород Колвицкого пояса и Умбинского блока (юго-восточная ветвь Лапландского гранулитового пояса), Кольский полуостров // Вестник МГТУ. 1998. Т. 1. № 3. С. 19-32.
- 5. Богданова М.Н., Ефимов М.М., Каулина Т.В. Геохронология заключительных этапов раннепротерозойского магматизма в коллизионном шве Беломоро-Лапландского пояса Балтийского щита (Колвицкая зона) // Докл. АН. 1996. Т. 350. № 5. С. 665-668.
- 6. Бушмин С.А., Доливо-Добровольский Д.В., Лебедева Ю.М. Инфильтрационный метасоматоз в условиях гранулитовой фации высоких давлений (на примере ортопироксен-силлиманитовых пород сдвиговых зон Лапландского гранулитового пояса) // Докл. АН. 2007. Т. 412. № 3. С. 383-387.
- 7. Бушмин С.А., Глебовицкий В.А., Савва Е.В. и др. Возраст высокобарического метасоматоза в зонах сдвиговых деформаций при коллизионном метаморфизме в Лапландском гранулитовом поясе: U-Pb-SHRIMP-II-датирование цирконов из силлиманит-гиперстеновых пород Порьегубского покрова // Докл. АН. 2009. Т. 428. № 6. С. 792-796.
- 8. Бушмин С.А., Вапник Е.А., Иванов М.В. и др. Флюиды гранулитов высоких давлений // Петрология. 2020. Т. 28. № 1. С. 23-54. https://doi.org/10.31857/S0869590320010021
- 9. Глебовицкий В.А., Алексеев Н.Л., Доливо-Добровольский Д.В. Реакционные структур и P-T режимы охлаждения глубинных образований Кандалакшско-Колвицкой структурно-формационной зоны, Кольский полуостров // Записки РМО. 1997. № 2. С. 1-22.
- 10. Глебовицкий В.А., Дук В.Л., Шарков Е.В. Эндогенный процессы / Земная кора восточной части Балтийского щита. Л.: Наука, 1978. С. 112-171.
- 11. Глебовицкий В.В., Балтыбаев Ш.К., Левченков О.А., Кузьмина Е.В. PT-t режим метаморфизма пород из верхней и нижней частей Умбинского покрова (Балтийский щит) // Докл. АН. 2006. Т. 409. № 1. С. 100-103.
- 12. Глебовицкий В.А., Балтыбаев Ш.К., Левченков О.А., Кузьмина Е.В. Термодинамический режим Свекофеннского (1.9 млрд лет) метаморфизма умбинского покрова Лапландского коллизионного орогена // Петрология. 2009. Т. 17. № 4. С. 355-377.
- 13. Доливо-Добровольский Д.В. Компьютерная программа TWQ_Comb. Версия 1.2.0.4. 2006a. URL: http://www.dimadd.ru/ru/Programs/twqcomb
- 14. Доливо-Добровольский Д.В. Компьютерная программа TWQ_View. Версия 1.2.0.22. 2006б. URL: http://www.dimadd.ru/ru/Programs/twqview
- 15. Каулина Т.В. Заключительные стадии метаморфической эволюции Колвицкого пояса и Умбинского блока (юго-восточная ветвь Лапландского гранулитового пояса): U-Pb датирование циркона, титанита, рутила // Вестник МГТУ. 2009. Т. 12. № 3. С. 386-393.
- 16. Каулина Т.В., Богданова М.Н. Основные этапы развития северо-западного Беломорья (по U-Pb изотопным данным) // Литосфера. 2000. № 12. С. 85-97.
- 17. Кислицын Р.В. Возраст и кинематика тектонических движений в ядре раннепротерозойского Лапландско-Кольского орогена: Автореф. дисс.. канд. геол.-мин. наук. Апатиты: ИГ КНЦ РАН, 2001. 22 с.
- 18. Кориковский С.П., Котов А.Б., Сальникова Е.Б. и др. Возраст протолита метаморфических пород юго-восточной части Лапландского гранулитового пояса (юг Кольского полуострова): корреляции с Беломорским подвижным поясом в связи с проблемой архейских эклогитов // Петрология. 2014. Т. 22. № 2. С. 107-125. https://doi.org/10.7868/s0869590314020046
- 19. Ларионова Ю.О., Самсонов А.В., Шатагин К.Н. Источники архейских санукитоидов Карельского кратона: Nd и Sr изотопно-геохимические данные // Петрология. 2007. Т. 15. № 6. С. 590-612.
- 20. Лебедева Ю.М. Метасоматические процессы при высоких температурах и давлениях в Лапландском гранулитовом поясе (на примере Порьегубского покрова): Автореф. дисс. … канд. геол.-мин. наук. СПб.: ИГГД РАН, 2015. 19 с.
- 21. Лебедева Ю.М., Глебовицкий В.А., Бушмин С.А. и др. Возраст высокобарического метасоматоза в зонах сдвиговых деформаций при коллизионном метаморфизме в Лапландском гранулитовом поясе: Sm-Nd метод датирования парагенезисов из силлиманит-ортопироксеновых пород Порьегубского покрова // Докл. АН. 2010. Т. 432. № 1. С. 99-102.
- 22. Лебедева Ю.М., Бушмин С.А., Глебовицкий В.А. Термодинамические условия метасоматоза в высокотемпературных и высокобарических зонах сдвиговых деформаций (Кандалакшско-Умбинская зона, Кольский полуостров) // Докл. АН. 2012. Т. 445. № 2. С. 191-195.
- 23. Митрофанов Ф.П., Балаганский В.В., Балашов Ю.А. и др. U-Pb возраст габбро-анортозитов Кольского полуострова // Докл. АН. 1993. Т. 331. № 1. С. 95-98.
- 24. Светов С.А., Степанова А.В., Бурдюх С.В. и др. Прецизионный ICP-MS анализ докембрийских горных пород: методика и оценка точности результатов // Труды КарНЦ РАН. 2023. № 2. С. 73-86. https://doi.org/10.17076/geo1755
- 25. Скублов С.Г., Балашов Ю.А., Марин Ю.Б. и др. U-Pb-возраст и геохимия цирконов из салминских эклогитов (месторождение Куру-Ваара, Беломорский пояс) // Докл. АН. 2010. Т. 432. № 5. С. 668-675.
- 26. Степанов В.С. Основной магматизм докембрия Западного Беломорья. Л.: Наука, 1981. 216 с.
- 27. Тугаринов А.И., Бибикова Е.В. Геохронология Балтийского щита по данным цирконометрии. М.: Наука, 1980. 132 с.
- 28. Ashwal L.D., Tucker R.D., Zinner E.K. Slow cooling of deep crustal granulites and the Pb-loss in zircon // Geochim. Cosmochim. Acta. 1999. V. 63. P. 2839-2851.
- 29. Balagansky V., Shchipansky A., Slabunov A. et al. Archean Kuru-Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: Crustal architecture, timing and tectonic implications // Int. Geol. Rev. 2015. V. 57. P. 1543-1565.
- 30. Balagansky V.V., Maksimov O.A., Gorbunov I.A. et al. Early Precambrian eclogites in the Belomorian Province, eastern Fennoscandian Shield // Precam. Res. 2024. V. 413. 107579. https://doi.org/10.1016/j.precamres.2024.107579
- 31. Berman R.G.Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 // J. Petrol. 1988. V. 29. P. 445-522.
- 32. Berman R.G. Thermobarometry using multiequilibrium calculations: А new technique, with petrological applications // Canad. Mineral. 1991. V. 29. № 4. P. 833-855.
- 33. Bogdanova M.N., Yefimov M.M. Origin of parental anorthosite magmas: Tectonic and metamorphic processes in the evolution of anorthosites (Kolvitsa anorthosite association). Apatity: KSC RAS, 1993. 62 p.
- 34. Bogdanova S.V., Gorbatschev R., Garetsky R.G. EUROPE | East European Craton. Reference Module in Earth Systems and Environmental Sciences, Elsevier. 2016.
- 35. Bridgwater D., Scott D.J., Balagansky V.V. et al. Age and provenance of Early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia: Evidence from Pb and Nd isotopic data // Terra Nova. 2001. V. 13. P. 32-37. https://doi.org/10.1046/j.1365-3121.2001.00307.x
- 36. Bridgwater D., Marker M., Mengel F. The eastern extension of the Early Proterozoic Torngat orogenic zone across the Atlantic // Eds. R.J. Wardle, J. Hall. Lithoprobe, Eastern Canadian Shield Onshore-Offshore Transect (ECSOOT), Memorial University of Newfoundland, 1992. № 27. P. 76-91.
- 37. Cawood P.A., Kröner A., Collins W.J. et al. Accretionary orogens through Earth history // Geol. Soc. Spec. Publ. 2009. V. 318. P. 11-36. https://doi.org/10.1144/SP318.
- 38. Cawood P.A., Hawkesworth C.J., Pisarevsky S.A. et al. Geological archive of the onset of plate tectonics // Phil. Trans. R. Soc. 2018. A 376: 20170405. http://dx.doi.org/10.1098/rsta.2017.0405
- 39. Daly J.S., Balagansky V.V., Timmerman M.J. et al. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere // Eds. D.C. Gee, R.A. Stephenson. European Lithosphere Dynamics. Geol. Soc. London. Memoirs. 2006. V. 32. P. 579-598.
- 40. Erofeeva K.G., Samsonov A.V., Larionov A.N. et al. Buried Paleoproterozoic orogen of the East European Craton: Age and origin of the Vyatka terrane // Gondw. Res. 2024. V. 129. P. 53-74. https://doi.org/10.1016/j.gr.2023.12.009
- 41. Fonarev V.I., Konilov A.N. Pulsating evolution of metamorphism in granulite terrains: Kolvitsa metaanorthosite massif, Kolvitsa Belt, Northeast Baltic Shield // Inter. Geol. Rev. 2005. V. 47. P. 815-850. https://doi.org/10.2747/0020-6814.47.8.815
- 42. François C., Pubellier M., Robert C. et al. Temporal and spatial evolution of orogens: A guide for geological mapping // Episodes. 2022. V. 45. № 3. P. 265-283. https://doi.org/10.18814/epiiugs/2021/021025
- 43. Frisch T., Jackson G.D., Glebovitsky V.A. et al. U-Pb ages of zircon from the Kolvitsa gabbro-anorthosite complex, southern Kola peninsula, Russia // Petrology. 1995. V. 3. P. 219-225.
- 44. Glebovitsky V., Marker M., Alexejev N. et al. Age, evolution and regional setting of the Palaeoproterozoic Umba igneous suite in the Kolvitsa-Umba zone, Kola Peninsula: Constraints from new geological, geochemical and U-Pb zircon data // Precam. Res. 2001. V. 105. P. 247-267. https://doi.org/10.1016/S0301-9268 (00)00114-5
- 45. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249-265.
- 46. Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites and achondrites, II // Earth Planet. Sci. Lett. 1984. V. 67. № 2. P. 137-150.
- 47. Jensen L.S. A new cation plot for classifying subalkalic volcanic rocks. Ontario Department of Mines, Miscellaneous Paper. 1976. V. 66. 22 p.
- 48. Konopelko D., Savatenkov V., Glebovitsky V. et al. Nd isotope variation across the Archaean-Proterozoic boundary in the North Ladoga Area, Russian Karelia // GFF. 2005. V. 127. № 2. P. 115-122. https://doi.org/10.1080/11035890501272115
- 49. Kusky T., Windley B., Safonova I. et al. Recognition of Ocean Plate Stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion // Gondw. Res. 2013. V. 24. P. 501-547. https://doi.org/10.1016/j.gr.2013.01.004
- 50. Lahtinen R., Huhma H. A revised geodynamic model for the Lapland-Kola Orogen // Precam. Res. 2019. V. 330. P. 1-19. https://doi.org/10.1016/j.precamres.2019.04.022
- 51. Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram // J. Petrol. 1986. V. 27. № 3. P. 745-750.
- 52. Murphy J.B. Arc magmatism II: Geochemical and isotopic characteristics // J. Geol. Assoc. Can. 2007. V. 34. P. 7-35.
- 53. Pearce J.A., Ernst R.E., Peate D.W., Rogers C. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record // Lithos. 2021. V. 392-393. P. 106068
- 54. Safonova I., Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes // Gondw. Res. 2014. V. 25. P. 126-158. https://doi.org/10.1016/j.gr.2012.10.008
- 55. Stepanova A., Stepanov V., Larionov A. et al. Relics of Palaeoproterozoic LIPs in the Belomorian Province, Eastern Fennoscandian Shield: Barcode reconstruction for a deeply eroded collisional orogeny // Eds. R.K. Srivastava, R.E. Ernst, K.L. Buchan, and M. De Kock. Large Igneous Provinces and their Plumbing Systems. Geol. Soc. London, Spec. Publ. 2022. V. 518. https://doi.org/10.1144/SP518-2021-30
- 56. Thirlwall M.F. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis // Chem. Geol. 1991. V. 94. № 2. P. 85-104. https://doi.org/10.1016/0168-9622 (91)90002-E
- 57. Vermeesch P. IsoplotR: a free and open toolbox for geochronology // Geosci. Front. 2018. V. 9. P. 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001.
- 58. Villa I.M., De Bièvre P., Holden N.E., Renne P.R. IUPAC-IUGS recommendation on the half life of 87Rb // Geochim. Cosmochim. Acta. 2015. V. 164. P. 382-385.
- 59. Warr L.N. IMA-CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. P. 291-320. https://doi.org/10.1180/mgm.2021.43
- 60. Wedepohl K.H., Hartmann G. The composition of the primitive upper Earth’s mantle, kimberlites, related rocks and mantle xenoliths // Eds. H.O.A. Meyer, O.H. Leonardos.Companhia de Pesquisa de Recursos Minerais. 1994. V. 1. P. 486-495.
- 61. Wilcox R.R. Applying Contemporary Statistical Techniques / Rank-based and nonparametric methods San Diego; London; Burlington: Academic Press, 2003. P. 557-608.