- PII
- S0869590325030048-1
- DOI
- 10.31857/S0869590325030048
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 33 / Issue number 3
- Pages
- 75-92
- Abstract
- The high activity of the Klyuchevskaya group of volcanoes in the Holocene suggests the accumulation of large volumes of solidified magmas with a low melt content (cumulates) and ultramafic-mafic intrusions in the earth's crust beneath it. In combination with the high fluid flux characteristic of the zone of rapid subduction of an ancient oceanic plate, this creates conditions for the formation of a fluid-magmatic ore-forming system. Sulfide inclusions in olivine, found in the eruption products of the Tolbachik volcano, may provide information about the composition of the fluid of such ore-forming systems. The interaction of a low-water reduced fluid with an oxidized (NNO+1.3) basaltic melt with a dissolved sulfur content of 2000–3000 ppm was theoretically modeled. It is shown that at a local fluid content of about 1–2 wt.%, sulfur in the melt is reduced and a sulfide melt is formed. The reduction of sulfur in the melt can also be caused by the dissolution of SO, which is the main form of sulfur in the fluid with oxygen fugacity O NNO+1.5. The reducing effect is explained by the higher degree of oxidation of sulfate sulfur in the melt (S) than the degree of oxidation of SO sulfur in the fluid (S). According to the modeling results, sulfide melt appears when 2000–3000 ppm sulfur is dissolved in the melt in the form of SO. When interacting with a barren fluid with a low content of precious metals (PM), droplets of sulfides with a low PM content are formed, corresponding to the background composition of the magma. According to experimental data, in the reduced low-water fluid, the solubility of Pt and Pd in the form of carbonyls is high with low solubility of Au, whereas at high oxygen fugacity (NNO+1+1.5) the solubility of gold is very high. When magma interacts with ore-forming fluids containing the first tens of ppm of precious metals, a sulfide melt is formed, enriched in Au (oxidized fluid) or Pt (reduced fluid). The liquidus temperature of olivine increases due to local dehydration of the magmatic melt when interacting with a low-water fluid (or oxidized brine), which leads to rapid growth of olivine at high undercooling. The localization of phase transitions at the boundary of fluid bubbles facilitates the capture of sulfide droplets by growing olivine crystals. The rare occurrence of sulfide droplet inclusions in olivine from Tolbachik volcano may be due to rapid dissipation of magma-fluid interaction effects at low average content of injected fluid, resulting in the sulfide phase dissolving in the magma.
- Keywords
- сера флюид магма кумулат ЭПГ золото вулкан Толбачик
- Date of publication
- 19.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 5
References
- 1. Ballhaus C., Berry R.F., Green D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
- 2. Barnes S.J., Liu W. Pt and Pd mobility in hydrothermal fluids: Evidence from komatities and from thermodynamic modelling // Ore Geol. Rev. 2012. V. 44. P. 49–58.
- 3. Barnes S.J., Godel B., Gurer D. et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides // Econom. Geol. 2013. V. 108. P. 1971–1982.
- 4. Benard A., Nebel O., Ionov D.A. et al. Primary silica-rich picrite and high-Ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub-arc mantle // J. Petrol. 2016. V. 57. No 10. P. 1955–1982.
- 5. Berkesi M., Guzmics T., Szabo C. et al. The role of CO rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths // Earth Planet. Sci. Lett. 2012. V. 331–332. P. 8–20.
- 6. Borisov A., Behrens H., Holtz F. Ferric/ferrous ratio in silicate melts: A new model for 1 atm data with special emphasis on the effects of melt composition // Contrib. Mineral. Petrol. 2018. V. 173. P. 98.
- 7. Boulliang J., Wood B.J. Sulfur oxidation state and solubility in silicate melts // Contrib. Mineral. Petrol. 2023. V. 178. P. 56. https://doi.org/10.1007/s00410-023-02033-9
- 8. Boudreau A.E., Mathez E.A., McCallum I.S. Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids // J. Petrol. 1986. V. 27. No 4. P. 967–986. https://doi.org/10.1093/petrology/27.4.967
- 9. Cameron E.M., Cogulu E.H., Stirling J. Mobilization of gold in the deep crust: Evidence from mafic intrusions in the Bamble belt, Norway // Lithos. 1993. V. 30. P. 151–166.
- 10. Chaplygin I., Yudovskaya M., Vergasova L., Mokhov A. Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka // J. Volcanol. Geothermal Res. 2015. V. 307. P. 200–209. https://doi.org/10.1016/j.jvolgeores.2015.08.018.
- 11. Churakov S.V., Gottschalk M. Perturbation theory based equation of state for polar molecular fluids: II. Fluid mixtures // Geochim. Cosmochim. Acta. 2003. V. 67. No 13. P. 2415–2425. https://doi.org/10.1016/S0016-7037 (02)01348-0
- 12. Dallai L., Cioni R., Boschi C., D’Oriano C. Carbonate-derived CO purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy // Earth Planet. Sci. Lett. 2011. V. 310. No 1–2. P. 84–95. https://doi.org/10.1016/j.epsl.2011.07.013
- 13. Ding S., Plank T., Wallace P.J., Rasmussen D.J. Sulfur_X: A model of sulfur degassing during magma ascent // Geochemistry, Geophysics, Geosystems. 2023. V. 24. e2022GC010552. https://doi.org/10.1029/2022GC010552
- 14. Frost B.R. On the stability of sulfides, oxides, and native metals in serpentine // J. Petrol. 1985. V. 26. Iss. 1. P. 31–63. https://doi.org/10.1093/petrology/26.1.31
- 15. Frost B.R. Introduction to oxygen fugacity and its petrologic importance // Rev. Mineral. Geochem. 1991. V. 25. No 1. P. 1–9.
- 16. Gerrits A.R., Inglis E.C., Dragovic B. et al. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet // Nat. Geosci. 2019. V. 12. P. 1029–1033. https://doi.org/10.1038/s41561-019-0471-y
- 17. Iacono-Marziano G., Le Vaillant M., Godel B.M. et al. The critical role of magma degassing in sulphide melt mobility and metal enrichment // Nature Communications. 2022. V. 13. P. 2359. https://doi.org/10.1038/s41467-022-30107-y
- 18. Jayasuriya K.D., O’Neill H.St.C., Berry A.J., Campbell S.J. A messbauer study of the oxidation state of fe in silicate melts // Amer. Mineral. 2004. V. 89. P. 1597–1609.
- 19. Jugo P.J., Wilke M., Botcharnikov R.E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity // Geochim. Cosmochim. Acta. 2010. V. 74. P. 5926–5938.
- 20. Kamenetsky V.S., Zelenski M., Gurenko A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chemical Geol. 2017. V. 471. P. 92–110. https://doi.org/10.1016/j.chemgeo.2017.09.019
- 21. Kiryukhin A., Chernykh E., Polyakov A., Solomatin A. Magma fracking beneath active volcanoes based on seismic data and hydrothermal activity observations // Geosci. 2020. V. 10. No 2. P. 52. https://doi.org/10.3390/geosciences10020052
- 22. Koulakov I., Gordeev E.I., Dobretsov N.L. et al. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 75–91.
- 23. Kutyrev A., Zelenski M., Nekrylov N. et al. Noble metals in arc basaltic magmas worldwide: A case study of modern and pre-historic lavas of the Tolbachik Volcano, Kamchatka // Front. Earth Sci. 2021. V. 9. 791465. https://doi.org/10.3389/feart.2021.791465
- 24. Masotta M., Keppler H. Anhydrite solubility in differentiated arc magmas // Geochim. Cosmochim. Acta. 2015. V. 158. P. 79–102.
- 25. Metrich N., Clocchiatti R. Sulfur abundance and its speciation in oxidized alkaline melts // Geochim. Cosmochim. Acta. 1996. V. 60. Iss. 21. P. 4151–4160. https://doi.org/10.1016/S0016-7037 (96)00229-3
- 26. Mironov N.L., Portnyagin M.V. Coupling of redox conditions of mantle melting and copper and sulfur contents in primary magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean) // Petrology. 2018. V. 26. No 2. P. 145–160.
- 27. Moussallam Y., Edmonds M., Scaillet B. et al. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kilauea volcano // Earth Planet. Sci. Lett. 2016. V. 450. P. 317–325. https://doi.org/10.1016/j.epsl.2016.06.031
- 28. Nash W.M., Smythe D.J., Wood B.J. Compositional and temperature effects on sulfur speciation and solubility in silicate melts // Earth Planet. Sci. Lett. 2019. V. 507. https://doi.org/10.1016/j.epsl.2018.12.006.
- 29. Phillips G.N., Powell R. Formation of gold deposits: A metamorphic devolatilization model // J. Metamorph. Geol. 2010. V. 28. No 6. https://doi.org/10.1111/j.1525-1314.2010.00887.x
- 30. Pokrovski G.S., Borisova A.Y., Bychkov A.Y. Speciation and transport of metals and metalloids in geological vapors // Rev. Mineral. Geochem. 2013. V. 76. P. 165–218.
- 31. Ponomareva V., Melekestsev I., Braitseva O. et al. Late pleistocene-holocene volcanism on the Kamchatka Peninsula, Northwest Pacific Region // Geophysical Monograph Series. 2007. V. 172. P. 165–198. https://doi.org/10.1029/172GM15
- 32. Prokofiev V.Y., Banks D.A., Lobanov K.V. et al. Exceptional concentrations of gold nanoparticles in 1.7 Ga fluid inclusions from the Kola Superdeep Borehole, Northwest Russia // Sci. Rep. 2020. V. 10. 1108. https://doi.org/10.1038/s41598-020-58020-8
- 33. Pu X., Lange R.A., Moore G.M. Evidence of degassing-induced oxidation of relatively oxidized K-rich magmas caused by degassing of dissolved SO (S) component in the melt to SO (S) in the gas phase // Amer. Geophys. Union, Fall Meet. 2016. Abstract V31C-3109.
- 34. Putirka K. Thermometers and Barometers for Volcanic Systems // Eds. K. Putirka, F. Tepley. Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem. Mineral. Soc. Amer. 2008. V. 69. P. 61–120.
- 35. Righter K., Campbell A.J., Humayun M., Hervig R.L. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts // Geochim. Cosmochim. Acta. 2004. V. 68. Iss. 4. P. 867–880. https://doi.org/10.1016/j.gca.2003.07.005
- 36. Ruefer A.C., Befus K.S., Thompson J.O., Andrews B.J. Implications of multiple disequilibrium textures in quartz-hosted embayments // Front. Earth Sci. 2021. V. 9. 742895. https://doi.org/10.3389/feart.2021.742895
- 37. Shan J., Ye C., Chen S. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation // J. Amer. Chem. Soc. 2021. V. 143. No 13. P. 5201–5211. https://doi.org/10.1021/jacs.1c01525
- 38. Shi P., Saxena S.K. Thermodynamic modeling of the C-H-O-S fluid system // Amer. Mineral. 1992. V. 77. No 9–10. P. 1038–1049.
- 39. Simakin A.G., Shaposhnikova O.Y. Low crustal fluid reservoirs in ultramafic cumulates of Kamchatka // Petrology. 2023. V. 31. P. 705–717. https://doi.org/10.1134/S0869591123060036
- 40. Simakin A., Salova T., Devyatova V., Zelensky M. Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 210–221.
- 41. Simakin A.G., Salova T.P., Gabitov R.I., Isaenko S.I. Dry CO-CO fluid as an important potential deep Earth solvent // Geofluids. 2016. V. 16. P. 1043–1057.
- 42. Simakin A.G., Salova T.P., Gabitov R.I. et al. Gold solubility in reduced carbon-bearing // Fluid Geochem. Int. 2019. V. 57. No 4. P. 400–406.
- 43. Simakin A., Salova T., Borisova A.Y. et al. Experimental study of Pt solubility in the CO-CO fluid at low O and subsolidus conditions of the ultramafic-mafic intrusions // Minerals. 2021a. V. 11. No 2. https://doi.org/10.3390/min11020225
- 44. Simakin A.G., Salova T.P., Shaposhnikova O.Y. et al. Experimental study of interaction of carbonic fluid with cumulus minerals of ultrabasic intrusions at 950°C and 200 MPa // Petrology. 2021b. V. 29. P. 371–385. https://doi.org/10.1134/S0869591121040068
- 45. Simakin A.G., Devyatova V.N., Shiryaev A.A. Theoretical and experimental modeling of local scale CO flushing of hydrous rhyolitic magma // Russian J. Earth Sci. 2023. V. 23. E56007, EDN: CTVIQU, https://doi.org/10.2205/2023e8000871
- 46. Simakin A.G., Shaposhnikova O.Yu., Isaenko S.I. et al. Raman spectroscopic data of the quenching phases of a Pt solution in a low water reduced carbonic fluid at = 200 MPa and = 950–1000°C // Petrology. 2024a. V. 32. No 5. P. 688–699.
- 47. Simakin A.G., Shaposhnikova O.Y., Devyatova V.N. et al. Estimation of chlorine fugacity in low-HO fluid of the C-O-(H)-NaCl system in the cumulus of ultramafic–mafic intrusions // Dokl. Earth Sci. 2024b. V. 515. P. 423–429. https://doi.org/10.1134/S1028334X23603292
- 48. Sullivan N.A., Zajacz Z., Brenan J.M. et al. The solubility of gold and palladium in magmatic brines: Implications for PGE enrichment in mafic-ultramafic and porphyry environments // Geochim. Cosmochim. Acta. 2022a. V. 316. P. 230–252. https://doi.org/10.1016/j.gea.2021.09.010
- 49. Sullivan N.A., Zajacz Z., Brenan J.M., Tsay A. The solubility of platinum in magmatic brines: Insights into the mobility of PGE in ore-forming environments // Geochim. Cosmochim. Acta. 2022b. V. 316. P. 253–272. https://doi.org/10.1016/j.gea.2021.09.014
- 50. White S.M., Crisp J.A., Spera F.J. Long-term volumetric eruption rates and magma budgets // Geochemistry, Geophysics, Geosystems. 2006. V. 7. Q03010. https://doi.org/10.1029/2005GC001002
- 51. Zelenski M., Kamenetsky V.S., Mavrogenes J.A. et al. Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka) // Lithos. 2017. V. 290–291. P. 172–188.
- 52. Zelenski M., Kamenetsky V.S., Mavrogenes J.A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts // Chemical Geol. 2018. V. 478. P. 102–111. https://doi.org/10.1016/j.chemgeo.2017.09.013.
- 53. Zelenski M., Kamenetsky V.S., Nekrylov N., Kontonikas-Charos A. High sulfur in primitive arc magmas, its origin and implications // Minerals. 2021. V. 12. No 1. P. 37. https://doi.org/10.3390/min12010037
- 54. Zhong S.-S., Zhao Y.-Y.S., Lin H. et al. High-temperature oxidation of magnesium- and iron-rich olivine under a CO atmosphere: Implications for Venus // Remote Sens. 2023. V. 15. 1959. https://doi.org/10.3390/rs15081959