RAS Earth ScienceПетрология Petrology

  • ISSN (Print) 0869-5903
  • ISSN (Online) 3034-5855

Experimental Modeling of the Process of Formation of Native Metals (Fe) in the Earth’s Crust in the Restorative Conditions

PII
S30345855S0869590325050017-1
DOI
10.7868/S3034585525050017
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 33 / Issue number 5
Pages
5-17
Abstract
The work presents the results of the experimental modeling of the process of formation of native Fe in the earth’s crust when the basalt melts interacting with fluid (H, H+CH) at temperatures (1100–1250°C), fluid pressure (1–100 MPa) in strongly restored conditions – O = 10–10 bar. The experiments were carried out using the installation of a high gas pressure equipped with a unique device that provides long-term experiments at high temperatures and fluid pressure. In the experiments, natural samples of magmatic rocks were used: the magnesium basalt of the northern breakthrough of the volcano Tolbachik (Kamchatka), as well as a magnesium basalt, enriched with nickel and cobalt oxides. Based on the experimental modeling, the following features of the process of interaction between the recovery fluid with basalt melts are established: 1. Despite the high restoration potential of the H system or the mixture (H+CH) – a magmatic melt, hydrogen oxidation reactions and the complete restoration of metals oxides in the melting do not go to the end. The cessation of redox reactions in the basalt melt occurs due to the formation of HO in the melt, buffering the restoration potential of hydrogen or mixture (H+CH). 2. Initially, the homogeneous magmatic melt becomes heterogeneous: the formed HO dissolves in the melt and, partially, in the fluid phase, while melts of more sour composition and small metal isolations of the liquidation structure are formed. 3. The process of metal-silicate liquidation in magmatic melts in their interaction with a restorative fluid can be carried out at real temperatures of the magmas in nature (≤1250°C), significantly lower corresponding melting temperatures of iron and its alloys with nickel and cobalt. 4. Carbon, which is formed in experiments due to pyrolysis CH, dissolves in the metal phase. Thus, the mechanism responsible for the presence of carbon in a native basalt in nature is experimentally substantiated. 5. The structure and sizes of experimentally installed metal isolations are well consistent with natural data on finds of native metals, primarily iron and its alloys with nickel and cobalt, in magmatic rocks of various composition and genesis.
Keywords
экспериментальное моделирование водород водород + метан базальт расплав самородный металл ликвация земная кора
Date of publication
21.04.2025
Year of publication
2025
Number of purchasers
0
Views
59

References

  1. 1. Аранович Л.Я. Флюидно-минеральные равновесия и термодинамические свойства смешения флюидных систем // Петрология. 2013. Т. 21. С. 588–599.
  2. 2. Аранович Л.Я., Персиков Э.С., Бухтияров П.Г. и др. Некоторые особенности процесса взаимодействия железа с метаном при температуре 900°C и давлении 100 МПа // Докл. АН. Науки о Земле. 2023. Т. 512. С. 60–65. https://doi.org/10.31857/S2686739723600996
  3. 3. Баженов И.К., Индукаев Ю.В., Яхно А.В. Самородное железо в габбро-долеритах р. Курейки (Красноярский край) // Зап. ВМО. 1959. Ч. 88. Вып. 2. С. 180–184.
  4. 4. Большое трещинное Толбачинское извержение (1975–1976 гг., Камчатка). М.: Наука, 1984. 637 с.
  5. 5. Борисов А.А. Форма выделений металлического железа в экспериментальных стеклах: не верь глазам своим? // Петрология. 2021. T. 29. C. 104–109.
  6. 6. Галактионова Н.В. Водород в металлах. М.: Металлургия, 1967. 303 с.
  7. 7. Данилов М.А., Юшкин Н.П. Первая находка олигоценовой лавы с самородным железом на севере Русской платформы // Докл. АН СССР. 1979. Т. 249. № 6. С. 1430–1432.
  8. 8. Куровская Н.А., Луканин О.А., Игнатьев Ю.А. и др. Влияние летучести водорода на растворимость и формы нахождения N-C-H-O летучих в базальтовых расплавах при 1.5 ГПа и 1400°С // Тр. ВЕСЭМПГ. 2018. С. 121–124.
  9. 9. Левашов В.К., Томшин М.Д., Глушков В.М. Новое местонахождение самородного железа на Сибирской платформе // Самородное металлообразование в магматическом процессе. Якутск: ЯНЦ СОРАН, 1991. С. 4–9.
  10. 10. Олейников Б.В., Округин А.В., Томшин М.Д. и др. Самородное металлообразование в платформенных базитах. Якутск: ЯФ СО АН СССР, 1985. 124 с.
  11. 11. Персиков Э.С., Бухтияров П.Г., Польской С.Ф., Чехмир А.С. Взаимодействие водорода с магматическими расплавами. Эксперимент в решении актуальных задач геологии. М.: Наука, 1986. С. 48–70.
  12. 12. Попель С.И., Сотников А.И., Бороненков В.Н. Теория металлургических процессов. М.: Металлургия, 1989. 287 с.
  13. 13. Рябов В.В., Павлов А.Л., Лопатин Г.Г. Самородное железо сибирских траппов. Новосибирск: Наука СО РАН, 1985. 167 с.
  14. 14. Томшин М.Д., Салихов Р.Ф., Матушкин А.И. и др. Самородное железо в долеритах Айхальского силла (первая находка в Якутии) // Природные ресурсы Арктикии Субарктики. 2019. Т. 24. № 9. С. 50–63.
  15. 15. Томшин М.Д., Копылова А.Г., Васильева А.Е. Самородное железо в траппах Сибири // Петрология. 2023. Т. 31. № 2. С. 202–216.
  16. 16. Шаповалов А.Н. Теория металлургических процессов. Новотроицк: Изд-во НФ НИТУ «МИСиС», 2015. 91 с.
  17. 17. Aranovich L.Y., Persikov E.S., Bukhtiyarov P.G., Bondarenko G.S. Interaction of Fe3C with hydrogen: on the compatibility of carbon with hydrogen in metallic iron // Petrology. 2021. V. 29. P. 695–701. https://doi.org/10.1134/S0869591121060072
  18. 18. Aranovich L.Y., Persikov E.S., Bukhtiyarov P.G. et al. Origin of the Earth’s first felsic crust: A hydrogen perspective? // Petrology. 2025. V. 33. no 1. P. 62–71. https://doi.org/10.1134/S0869591124700279
  19. 19. Barin I. Thermochemical data of pure substances. Third Edition. VCH Publishers, Inc., 1995. 1885 p.
  20. 20. Bird J.M., Goodrick C.A., Weathers M.S. Petrogenesis of Uivfaq Iron, Disko Island, Greenland // J. Geophys. Res. 1981. V. 86. no 12. P. 11787–11806.
  21. 21. Churakov S.V., Gottschalk M. Perturbation theory based equation of state for polar molecular fluids: I. Pure fluids // Geochim. Cosmochim. Acta. 2003. V. 67. P. 2397–2414.
  22. 22. Chipman J. Thermodynamics and phase diagram of the Fe-C system // Metallurgical Transactions. V. 3. 1972. P. 55–64.
  23. 23. Doan A.S., Goldstein J.I. The ternary phase diagram, Fe-Ni-P // Metallurgical Transactions. 1970. V. 1. no 6. P. 1759–1767. https://doi.org/10.1007/bf02642026.
  24. 24. Idalou C., Hirschmann M.M., Jacobsen S.D., Le Losq С. Raman spectroscopy study of C-O-H-N speciation in reduced basaltic glasses: Implications for reduced planetary mantles // Geochim. Cosmochim. Acta. 2019. V. 265. P. 32–47.
  25. 25. Iacovino K., Matthews S., Wieser P.E. et al. VESIcal Part I: An open-source thermodynamic model engine for mixed volatile (H2O-CO2) solubility in silicate melts // Earth Space Sci. 2021. V. 8. e2020EA001584. https://doi.org/10.1029/2020EA001584
  26. 26. Howarth G.H., Day J.M.D., Pernet-Fisher J.F. et al. Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS // Geochim. Cosmochim. Acta. 2017. V. 203. P. 343–363.
  27. 27. Kadik A.A., Koltashev V.V., Kryukova E.B. et al. Solubility of nitrogen, carbon, and hydrogen in FeO-Na2O-Al2O3-SiO2 melt and liquid iron alloy: influence of oxygen fugacity // Geochem. Int. 2015. V. 53. no 10. P. 849–868.
  28. 28. Kadik A.A., Kurovskaya N.A., Lukanin O.A. et al. Formation of N-С-О-Н molecules and complexes in the basalt–basaltic andesite melts at 1.5 GPa and 1400°C in the presence of liquid iron alloys // Geochem. Int. 2017. V. 55. no 2. P. 151–162.
  29. 29. Kamenetsky V.S., Charlier B., Zhitova L. et al. Magma chamber-scale liquid immiscibility in the Siberian Traps represented by melt pools in native iron // Geology. 2013. V. 41. no 10. P. 1091–1094. https://doi.org/10.1130/G34638.1
  30. 30. Luth R.W., Mysen B.O., Virgo D. Raman spectro-scopic study of the solubility behavior of H2 in the system Na2O-Al2O3-SiO2-H2 // Amer. Mineral. 1987. P. 481–486.
  31. 31. Melson W.G., Switzer C. Plagioclase-spinel-graphite xenoliths in metallic iron-bearing basalts, Disko Island, Greenland // Amer. Mineral. 1966. V. 51. no 5–6. P. 664–676.
  32. 32. Mysen B.O. Relation between structure, redox equilibria of iron, and properties of magmatic liquids // Physical Chemistry of Magmas. Springer–Verlag. 1991. P. 41–98.
  33. 33. Pedersen A.K. Basaltic glass with high-temperature equilibrated immiscible sulphide bodies with native iron from Disko, Central West Greenland // Contrib. Mineral. Petrol. 1979. V. 69. no 4. P. 397–407.
  34. 34. Persikov E.S., Zharikov V.A., Bukhtiyarov P.G., Pol’skoy S.F. The effect of volatiles on the properties of magmatic melts // Europ. J. Mineral. 1990. P. 621– 642.
  35. 35. Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y. et al. Experimental modeling of formation of native metals (Fe, Ni, Co) in the earth’s crust by the interaction of hydrogen with basaltic melts // Geohem. Int. 2019. V. 57. P. 1035–1044.
  36. 36. Persikov E.S., Bukhtiyarov P.G., Aranovich L.Y., Shchekleina M.D. Features of hydrogen interaction with basaltic melts at pressures 10–100 MPa and temperatures 1100–1250°C // Chem. Geol. 2020. V. 556. P. 116–119. https://doi.org/10.1016/j.chemgeo.2020.119829
  37. 37. Ramdohr P. Ne Neüee Beobachtugenam Bühleisen. Sittr.–Ber. Berliner Akad. Wiss., Math-nat. 1952. no 5. S. 9–24.
  38. 38. Sugimoto H., Fukai Y. Solubility of hydrogen in metals under high hydrogen pressures: thermodynamical calculations // Acta Metallurgica et Materialia. 1992. P. 2327–2336.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library