- PII
- S30345855S0869590325050041-1
- DOI
- 10.7868/S3034585525050041
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 33 / Issue number 5
- Pages
- 58-78
- Abstract
- The distribution of Ti, Zr, Nb, La, Sm, Yb, and Y was experimentally studied between phosphatecarbonate melts, silicate-bearing melts (at addition of silicate in starting mixtures) and minerals - apatite (Ca(PO)F), fluorite (CaF), and nacaphite - (CaNaPOF). Four experimental series were carried out in an internally heated gas pressure vessels at a pressure of 500 MPa using four types of starting melts: (1) Ca(PO)F) + CaCO + NaCO + NaAlSiO at 1100-750°С; (2) Ca(PO)F + CaCO + NaF + NaAlSiO at 950°С; (3) NaPO + CaCO + CaF + NaF + NaAlSiO at 900°С; and (4) NaPO + CaCO + NaF + NaAlSiO at 900°С with variable proportions of РО, СаО, NaO, and SiO. HO, HCO, as well as a mixture of trace element oxides were added in equal mass proportions to all starting compositions. The experimental products were analyzed by electron probe microanalysis. Depending on the СаО and PO proportion, the silicate-free starting mixtures in three former series yielded two types of quenched melts: *calcite-rich melt with 20 mol % NaO at lower PO content and **sodic-carbonate-phosphate melt with low CaO at higher PO content. The solubility of ZrO, TiO, and NbO in the obtained calcite-rich quenched melts at 650С is low and constrained by the crystallization of Zr, Ti, and Nb oxides. At 1000С, these oxides are not formed, and the concentrations of ZrO, TiO, and NbO increase in melts with increasing PO/(PO+CaO) ratio. The REE partition coefficients between apatite and coexisting Ca-rich carbonate melt increases with increasing PO content from 0.2 to 0.9 for LaO, from 0.25 to 0.75 for SmO, from 0.2 to 0.6 for YbO, and from 0.2 to 0.4 for YO, reaching in single case 0.5. In runs of series IV the silicate-bearing starting mixtures yielded two immiscible melts: SiO2-free phosphate-rich melt with apatite and nepheline and aluminum-silicate melt in run IV-7. Run IV-8 produced two immiscible melts, sodic-phosphate and silicate, with PO content no more than 25 wt %. The concentrations of TiO, ZrO, NbO are much higher in the phosphate-rich melt than in the silicate melt with the lower phosphorus content. Their partition coefficients in run IV-7 are dTiO = 13.9, dZrO = 2.46, dNbO = 3.01, and are less, but still more than one in run IV-8: dTiO = 1.29, dZrO = 2.04, dNbO = 1.24.
- Keywords
- фосфатные и алюмосиликатные несмесимые расплавы редкие элементы эксперимент
- Date of publication
- 15.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 63
References
- 1. Белов С.В., Лапин А.В., Толстов А.В., Фролов А.А. Минерагения платформенного магматизма (трапы, карбонатиты, кимберлиты). Новосибирск: Наука СО РАН, 2008. 537 с.
- 2. Делицын Л.М., Делицына Л.В. Несмесимость жидких фаз в системах Ca5(PO4)3F–SiO2–NaF–FeO и Ca5(PO4)3F–SiO2–NaF–Fe2O3 и их значение в генезисе апатитовых месторождений // Докл. АН. 2002. Т. 386. № 4. С. 533–537.
- 3. Равич М.И. Водно-солевые системы при повышенных температурах и давлениях. М.: Наука, 1974. 151 с.
- 4. Расс И.Т., Петренко Д.Б., Ковальчук Е.В., Якушев А.И. Фоскориты и карбонатиты: взаимоотношения, возможные петрогенетические процессы и исходная магма (массив Ковдор, Кольский п-ов) // Геохимия. 2020. Т. 65. № 7. С. 627–653.
- 5. Сук Н.И. Особенности жидкостного расслаивания фосфорсодержащих силикатно-солевых расплавов // Докл. АН. 1993. Т. 329. № 3. С. 335–338.
- 6. Сук Н.И. Поведение рудных элементов (W, Sn, Ti и Zr) в расслаивающихся силикатно-солевых системах // Петрология. 1997. Т. 5. № 1. С. 20–27.
- 7. Сук Н.И. Экспериментальные явления несмесимости силикатно-карбонатных систем // Петрология. 2001. Т. 9. № 5. С. 547–558.
- 8. Chakhmouradian A.R., Reguir E.P., Zaitsev A.N. et al. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance // Lithos. 2017. V. 274. P. 188–213. https://doi.org/10.1016/j.lithos.2016.12.037
- 9. Chebotarev D.A., Veksler I.V., Wohlgemuth-Ueber-wasser C. et al. Experimental study of trace element distribution between calcite, fluorite and carbonatite melt in the system CaCO3 + CaF2 + Na2CO3 ± ± Ca3(PO4)2 at 100 MPa // Contrib. Mineral. Petrol. 2019. V. 174. no 4. https://doi.org/10.1007/s00410-0181530-x
- 10. Dawson J.B. Sodium carbonate lavas from Oldo-inyo Lengai, Tanganyika // Nature. 1962. V. 195. P. 1075–1076. https://doi.org/10.1038/1951075a0
- 11. Dawson J.B. Sodium carbonatite extrusions from Oldoinyo Lengai, Tanganyika: Implications for carbonatite complex genesis // Ed. K. Bell. Carbo-natites: genesis and evolution. London: Unwin Hyman, 1989. P. 255–257. https://doi.org/10.1017/S0016756800015223
- 12. Giebel R.J., Marks M.A.W., Gauert C.D.K., Markl G. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa // Lithos. 2019. V. 324–325. P. 89–104. https://doi.org/10.1016/j.lithos.2018.10.030
- 13. Gramenitskiy E.N., Shchekina T.I. Behavior of rare earth elements and yttrium during the final differentiation stages of fluorine-bearing magmas // Geochem. Int. 2005. V. 43. P. 39–52.
- 14. Guzmics T., Mitchell R.H., Szabo C. et al. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in coprecipitated minerals from Kerimasi volcano (Tanzania): Evolution of carbonated nephelinitic magma // Contrib. Mineral. Petrol. 2012. V. 164. P. 101–122. https://doi.org/10.1007/s00410-012-0728-6
- 15. Hamilton D.L., Freestone I.C., Dawson J.B., Donaldson C.H. Origin of carbonatites by liquid immiscibility // Nature. 1979. V. 279. P. 52–54. https://doi.org/10.1038/279052a0
- 16. Jones J.H., Walker D., Picket D.A. et al. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids // Geochim. Cosmochim. Acta. 1995. V. 59. P. 1307–1320. https://doi.org/10.1016/0016-7037 (95)00045-2
- 17. Keppler H. Water solubility in carbonatite melts // Amer. Mineral. 2003. V. 88. P. 1822–1824. http://dx.doi.org/10.2138/am-2003-11-1224
- 18. Khomyakov A.P., Kazakova M.E., Pushcharovskiy D.Yu. Nacaphite (Na2Ca(PO4)F) – a new mineral // Int. Geol. Rev. 1981. V. 23. P. 739–740.
- 19. Kjarsgaard B.A., Hamilton D.L. The genesis of carbonatites by liquid immiscibility // Ed. K.E. Bell. Carbonatites: Genesis and Evolution. London: Unwin Hyman, 1989. P. 388–404.
- 20. Kjarsgaard B.A., Hamliton D.L., Peterson T.D. Peralkaline nephelinite/carbonatite liquid immiscibility: Comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai // Eds. K. Bell and J. Keller. Carbonatite Volcanism. Oldoinyo Lengai and Petrogenesis of Natrocarbonatites. Berlin: Springer-Verlag, 1995. P. 163–190. https://doi.org/10.1017/S0016756800015223
- 21. Rass I.T. Trace-element partitioning between apatite and phosphate melt at 0.5 GPa and 900°C // Experiment GeoSci. 2017. V. 23. no 1. P. 174–177.
- 22. Rass I.T., Shmulovich K.I., Petrenko D.B. Distribution of trace elements between phases in the carbonate–phosphate system with fluorine at 500 MPa // Lithos. 2023. V. 440–441. 107053.
- 23. Ryabchikov I.D., Hamilton D.L. Interaction of carbonate–phosphate melts with mantle peridotites at 20–35 kbar // South African J. Geol. 1993. V. 96. no 3. P. 143–148.
- 24. Ryabchikov I.D., Orlova G.P., Senin V.G., Trubkin N.V. Partitioning of rare earth elements between phosphate-rich carbonatite melts and mantle peridoti-tes // Mineral. Petrol. 1993. V. 49. P. 1–12. https://doi.org/10.1007/BF01162922
- 25. Suk N.I. Distribution of ore elements between immiscible liquids in silicate–phosphate systems (experimental investigation) // Acta Universitatis Carolinae. 1998. V. 42. P. 138–140.
- 26. Veksler I.V., Keppler H. Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1 ± 0.2 GPa // Contrib. Mineral. Petrol. 2000. V. 138. P. 27–34. https://doi.org/10.1007/PL00007659
- 27. Veksler I.V., Petibon C., Jenner G.A. et al. Trace element partitioning in immiscible silicate–carbonate liquid systems: An initial experimental study using a centrifuge autoclave // J. Petrol. 1998. V. 39. P. 2095–2104. https://doi.org/10.1093/petroj/39.11-12.2095
- 28. Veksler I.V., Dorfman A.M., Dulski P. et al. Parti-tioning of elements between silicate melt and immiscible fluoride, carbonate, phosphate melts // Geochim. Cosmochim. Acta. 2012. V. 79. P. 20–40. https://doi.org/10.1016/j.gca.2011.11.035
- 29. Wall F., Zaitsev A.N. Phoscorites and carbonatites from mantle to mine: the key example of the Kola alkaline province. London: Mineralogical Society of Great Britain and Ireland, 2004. 492 p. https://doi.org/10.1180/MSS.10.05
- 30. Warr L.N. IMA–CNMNC approved mineral symbols // Mineral. Mag. 2021. V. 85. no 3. P. 291–320. https://doi.org/10.1180/mgm.2021.43
- 31. Woolley A.R., Kjarsgaard B.A. Carbonatite occur-rences of the world: map and database // Geol. Surv. Canada. Open File. 2008. 5796. https://doi.org/10.4095/225115
- 32. Yang Dao-Ming, Hou Tong, Botcharnikov R.E. et al. An experimental study on the role of F–, PO43–, Cl– and SO42– ligands in the natrocarbonatite-nephelinite system at 850°C and 0.1 GPa // Chem. Geo. 2024. V. 655. 122085.