- PII
- S30345855S0869590325050051-1
- DOI
- 10.7868/S3034585525050051
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 33 / Issue number 5
- Pages
- 79-93
- Abstract
- Large single crystals of natural zircon were shock-loaded at 13.6 and 51.3 GPa in planar geometry. No structural transformations are observed after the loading at 13.6 GPa. In the experiment at 51.3 GPa zircon transforms to its denser polymorph – reidite, with sheelite-like structure. Investigation of the reidite sample using -ray diffraction, Raman spectroscopy, photo- and cathodoluminescence revealed segregation of some trace elements cations (such as REE) on planar defects. Importantly, the segregation has occurred in a laboratory-scale experiment without long-term annealing of the sample after the shock loading. Plausible mechanism of segregation of three-valent trace elements implies local violation of charge balance in course of reconstructive transformation of zircon to reidite. As a result of related changes in topology of polyhedra and in second (Si–Zr) coordination sphere, a fraction of trace elements is expelled into energetically expensive interstitial positions with high diffusivities even at low temperatures.
- Keywords
- ударное воздействие циркон рейдит эксперимент рентгеновская дифракция спектроскопия комбинационного рассеяния фотолюминесценция катодолюминесценция спектроскопия
- Date of publication
- 15.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 57
References
- 1. Алексеевский В.П., Джамаров С.С., Ковтун В.И. и др. Массоперенос в металлах, вызванный сходящейся цилиндрической ударной волной // Порошковая металлургия. 1989. № 10. С. 80–84.
- 2. Alekseevskii V.P., Dzhamarov S.S., Kovtun V.I. et al. Mass transfer in metals caused by a convergent cylindrical shock wave // Soviet Powder Metallurgy and Metal Ceramics. 1989. V. 28. no 10. P. 809–813.
- 3. Альтшулер Л.В., Кулешова Л.В., Павловский М.Н. Динамическая сжимаемость, уравнение состояния и электропроводность хлористого натрия при высоких давлениях» // ЖЭТФ. 1960. Т. 39. Вып. 1(7). С. 16–24.
- 4. Al'tshuler L.V., Kuleshova L.V., Pavlovskii M.N. The dynamic compressibility, equation of state and electrical conductivity of sodium chloride at high pressures // Sov. Phys. Jetp. 1961. V. 12. no 1.
- 5. Бацанов С.С. Твердофазные химические реакции в ударных волнах: кинетические исследования и механизм // Физика горения и взрыва. 1996. Т. 32. Вып. 1. С. 115–128.
- 6. Batsanov S.S. Solid-phase reactions in shock waves: Kinetic studies and mechanism // Combustion, Explosion and Shock Waves. 1996. V. 32. no 1. P. 102–113.
- 7. Дремин А.Н., Бреусов О.Н. Процессы, протекающие в твердых телах под действием сильных ударных волн // Успехи химии. 1968. Т. 37. Вып. 5. С. 898–916.
- 8. Dremin A.N., Breusov O.N. Processes Occurring in Solids Under the Action of Powerful Shock Waves // Russ. Chem. Rev. 1968. V. 37. no 5. P. 392–402. https://doi.org/10.1070/RC1968v037n05ABEH001643
- 9. Козлов Е.А., Жугин Ю.Н., Литвинов Б.В. и др. Оценка амплитуды ударной нагрузки по изменению состава полевых шпатов в импактированной породе // Докл. АН. 1998. Т. 361. № 3. С. 333–336.
- 10. Dokl. Phys. 1998. V. 43. P. 419–422.
- 11. Краснобаев А., Вотяков С., Крохалев В. Спектроскопия циркона. Свойства и геологические приложения. М.: Наука, 1988.
- 12. Якушев В.В., Уткин А.В., Жуков А.Н. и др. Определение P–T условий, реализующихся при высокотемпературном ударном сжатии нитрида кремния в плоских ампулах сохранения // Теплофизика высоких температур. 2016. Т. 54. Вып. 2. С. 210–218.
- 13. Yakushev V.V., Utkin A.V., Zhukov A.N. et al. Determination of P–T conditions developed at high-temperature shock compression of silicon nitride in planar recovery ampoules // High Temperature. 2016. V. 54. P. 197–205.
- 14. Bohor B.F., Betterton W.J., Krogh T.E. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism // Earth Planet. Sci. Lett. 1993. V. 119. P. 419–424.
- 15. Chen M., Yin F., Li X. et al. Natural occurrence of reidite in the Xiuyan crater of China // Meteorit. Planet. Sci. 2013. V. 48. P. 796–805.
- 16. Cesbron F., Blanc P., Ohnenstetter D. et al. Cathodo-luminescence of rare earth doped zircons. I. Their possible use as reference materials // Scanning Micro-scopy. 1995. V. 1995. article 3.
- 17. Cherniak D.J., Hanchar J.M., Watson E.B. Rare-Earth diffusion in zircon // Chem. Geol. 1997. V. 134. P. 289–301.
- 18. Chiker F., Boukabrine F., Khachai H. et al. Inves-tigating the structural, thermal, and electronic properties of the zircon-type ZrSiO4, ZrGeO4 and HfSiO4 compounds // J. Electron. Material. 2016. V. 45. P. 5811–5821.
- 19. Erickson T.M., Pearce M.A., Reddy S.M. et al. Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon // Contrib. Mineral. Petrol. 2017. V. 172. P. 1–26.
- 20. Filimonova O.N., Trigub A.L., Tonkacheev D.E. et al. Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals // Mineral. Mag. 2019. V. 83. P. 435–451.
- 21. Fortov V.E., Kim V.V., Lomonosov I.V. et al. Numerical modeling of hypervelocity impacts // Int. J. Impact Eng. 2006. V. 33. P. 244–253.
- 22. Friis H., Finch A.A., Williams C.T. et al. Photo-luminescence of zircon (ZrSiO4) doped with REE3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er) // Phys. Chem. Mineral. 2010. V. 37. P. 333–342.
- 23. Gain S.E., Gréau Y., Henry H. et al. Mud tank zircon: Long‐term evaluation of a reference material for U‐Pb dating, Hf‐isotope analysis and trace element analysis // Geost. Geoanalyt. Res. 2019. V. 43. P. 339–354.
- 24. Gao Y., Zheng Z., Zhao X. et al. In situ Raman spectroscopy and DFT studies of the phase transition from zircon to reidite at high P–T conditions // Minerals. 2022. V. 12. 1618.
- 25. Glass B.P., Liu S. Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock-metamorphosed zircons // Geology. 2001. V. 29. P. 371–373.
- 26. Glazovskaya L.I., Shcherbakov V.D., Piryazev A.A. Logoisk impact structure, Belarus: Shock transformation of zircon // Meteorit. Planet. Sci. 2024. V. 59. P. 88–104.
- 27. Gucsik A., Koeberl C., Brandstätter F. et al. Cathodo-luminescence, electron microscopy, and Raman spectroscopy of experimentally shock-metamorphosed zircon // Earth Planet. Sci. Lett. 2002. V. 202. P. 495–509.
- 28. Gucsik A., Zhang M., Koeberl C. et al. Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures // Mineral. Mag. 2004a. V. 68. P. 801–811.
- 29. Gucsik A., Koeberl C., Brandstätter F. et al. Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock metamorphosed zircon crystals and naturally shocked zircon from the Ries impact crater // Ed. H. Dypvik et al. Cratering in Marine Environments and on Ice. Springer, 2004b.
- 30. Kusaba K., Syono Y., Kikuchi M. et al. Shock behavior of zircon: phase transition to scheelite structure and decomposition // Earth Planet. Sci. Lett. 1985. V. 72. P. 433–439.
- 31. Leroux H., Reimold W.U., Koeberl C. et al. Experimental shock deformation in zircon: A transmission electron microscopic study // Earth Planet. Sci. Lett. 1999. V. 169. P. 291–301.
- 32. Li S.S., Keerthy S., Santosh M. et al. Anatomy of impactites and shocked zircon grains from Dhala reveals Paleoproterozoic meteorite impact in the Archean basement rocks of Central India // Gondwana Res. 2018. V. 54. P. 81–101.
- 33. Liu L.G. High pressure transformation in baddeleyite and zircon, with geological implications // Earth Planet. Sci. Lett. 1979. V. 44. P. 390–396.
- 34. Mashimo T., Nagayama K., Sawaoka A. Shock compression of zirconia ZrO2 and zircon ZrSiO4 in pressure range up to 150 GPa // Phys. Chem. Mineral. 1983. V. 9. P. 237–247.
- 35. Mihailova B., Waeselmann N., Stangarone C. et al. The pressure-induced phase transition(s) of ZrSiO4: Revised // Phys. Chem. Mineral. 2019. V. 46. P. 807–814.
- 36. Montalvo S.D., Reddy S.M., Saxey D.W. et al. Nanoscale constraints on the shock-induced trans-formation of zircon to reidite // Chem. Geol. 2019. V. 507. P. 85–95.
- 37. Nasdala L., Zhang M., Kempe U. et al. Spectroscopic methods applied to zircon // Rev. Mineral. Geochem. 2003. V. 53. P. 427–467. dоi:10.2113/0530427
- 38. Peterman E.M., Reddy S.M., Saxey D.W. et al. Nanoscale processes of trace element mobility in metamorphosed zircon // Contrib. Mineral. Petrol. 2019. V. 174. article 192.
- 39. Piazolo S., La Fontaine A., Trimby P. et al. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography // Nature Communications. 2016. V. 7. 10490.
- 40. Plan A., Kenny G.G., Erickson T.M. et al. Exceptional preservation of reidite in the Rochechouart impact structure, France: New insights into shock deformation and phase transition of zircon // Meteorit. Planet. Sci. 2021. V. 56. P. 1795–1828.
- 41. Potter D.K., Ahrens T.J. Shock induced formation of MgAl2O4 spinel from oxides // Geophys. Res. Lett. 1994. V. 21. no 8. P. 721–724.
- 42. Reddy S.M., Johnson T.E., Fischer S. et al. Precambrian reidite discovered in shocked zircon from the Stac Fada impactite, Scotland // Geology. 2015. V. 43. P. 899–902.
- 43. Reddy S.M., van Riessen A., Saxey D.W. et al. Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy // Geochim. Cosmochim. Acta. 2016. V. 195. P. 158–170.
- 44. Reid A.F., Ringwood A.E. Newly observed high pressure transformation in Mn3O4, CaAl2O4 and ZrSiO4 // Earth Planet. Sci. Lett. 1969. V. 6. P. 205–208.
- 45. Rémond G., Blanc P., Cesbron F. et al. Cathodo-luminescence of rare earth doped zircons. II. Relationship between the distribution of the doping elements and the contrasts of images // Scan. Microscop. 1995. V. 1995. article 4.
- 46. Smirnov M.B., Sukhomlinov S.V., Smirnov K.S. Vibrational spectrum of reidite ZrSiO4 from first principles // Physical Rev. B. 2010. V. 82. 094307.
- 47. Stangarone C., Angel R.J., Prencipe M. et al. New insights into the zircon-reidite phase transition // Amer. Mineral. 2019. V. 104. P. 830–837.
- 48. Szumila I., Trail D., Erickson T. et al. Microstructural changes and Pb mobility during the zircon to reidite transformation: Implications for planetary impact chronology // Amer. Mineral. 2023. V. 108. P. 1516–1529.
- 49. Timms N.E., Erickson T.M., Pearce M.A. et al. A pressure–temperature phase diagram for zircon at extreme conditions // Earth-Sci. Rev. 2017. V. 165. P. 185–202.
- 50. Trofimov N.D., Trigub A.L., Tagirov B.R. et al. The state of trace elements (In, Cu, Ag) in sphalerite studied by X-ray absorption spectroscopy of synthetic minerals // Minerals. 2020. V. 10. P. 640. https://doi.org/10.3390/min10070640
- 51. van Westrenen W., Frank M. R., Hanchar J. M. et al. In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition // Amer. Mineral. 2004. V. 89. P. 197–203.
- 52. Wittmann A., Kenkmann T., Schmitt R.T. et al. Shock‐metamorphosed zircon in terrestrial impact craters // Meteorit. Planet. Sci. 2006. V. 41. P. 433–454.
- 53. Xing W., Lin Y., Zhang C. et al. Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169 // Geophys. Res. Lett. 2020. V. 47. e2020GL089583.
- 54. Yakushev V.V., Utkin A.V., Zhukov A.N. et al. Shock compressibility of polycrystalline nickel aluminide // High Pressure Res. 2019. V. 39. P. 471–479.
- 55. Zhao J., Xiao L., Xiao Z. et al. Shock-deformed zircon from the Chicxulub impact crater and implications for cratering process // Geology. 2021. V. 49. P. 755–760.